
Bionics4Education 1

 Advanced Activities - Information and Ideas

To give a robot life, it needs programmable components. These components can read sensor values or
control motors. They serve as the 'brain' of the robot. The robots in the Bionics Kit use a microcontroller
with a programmable processor and various inputs and outputs.

A microcontroller is a programmable device. In most cases, it consists of a processor and associated
components such as memory and digital or analog inputs and outputs. In order to program a
microcontroller, a computer with the appropriate software is needed. The software allows you to develop
the logic using a programming language and then load the program onto the microcontroller.

You will use the Arduino IDE (Integrated Development Environment). An IDE is a tool for software
development and provides various libraries and tools in one interface. The IDE converts (compiles) the
written software into machine code that carries out your real-world commands. The Arduino IDE is used
for Arduino and Arduino-compatible microcontroller boards. It allows software to be written in C/C++ and
loaded onto the microcontroller.

Congratulations! You successfully created and controlled the robotic chameleon using the program
developed for the chameleon project. Here you'll learn how you can change the original program
using Arduino IDE, upload it to the microcontroller, and test it on the robot!

Basic Programming

Programs written using Arduino Software (IDE) are called sketches and are saved in the text editor. When
you write a program in Arduino, you are using a combination of C/C++ languages.

An Arduino program has the same basic structure. It includes the "setup" and "loop" functions. These
functions are required by the Arduino system and you must have one of each. The "setup" function
contains everything that is to be executed once, at the beginning of the program. The actions to be
performed are written between the braces "{ ... }". Each command you write is executed once before
moving to the next command, in order. When the program reaches the end of the "setup"function, it
moves to the "loop" function.

The "loop" function is where your main code is entered, to run in an endless loop. Each command you
write between the braces is executed in order. When the program reaches the end of the "loop" function,
it then moves to the top of the "loop" function and executes the code again.

2 Bionics4Education

An Arduino program consists of letters, words, and symbols, known as tokens. In this example, the
program turns an on-board LED on for one second, then off for one second, repeatedly.

The "setup" code sets the LED pin as the output using the function "pinMode". The "pinMode" function
tells the code to run a section of code written elsewhere in Arduino. The parentheses are tokens that
enclose the inputs, known as arguments, to the "pinMode" function. The "pinMode" function uses these
arguments to determine which pin it should control and if that pin should be an input or an output. The
comma token is how C/C++ separates parameters. The semicolon is a special C token, known as a
statement terminator. It is used to denote the end of a command.

The "loop" function contains the code necessary to turn the LED on, wait the one second delay (1000 ms),
turn the LED off, and wait another one second delay (1000 ms). The program then returns to the top and
executes again.

In Arduino, the "setup" function is called on once, and the "loop" is called on repeatedly.

Data Types

A data type tells the compiler how to use a piece of data. In C/C++ there are three fundamental types of
data.

Void is a type, but it means 'nothing' or 'no type'. In Arduino, it's used to define the 'setup' and 'loop'
functions, and returns no value.

There are only three fundamental types of data in C/C++, however, keywords are used to change how the
types work.

Variables

In order to write programs, you must understand the concept of variables. A variable is a portion of memory
(container) used to store a value and reuse it later in the program. In C/C++, each variable needs a data
type and a name, or identifier, that identifies it and distinguishes it from the others.

Identifiers can be a combination of upper or lowercase letters and numbers. The only special character you
can use is the underscore. C/C++ uses many reserved keywords to identify operations and data
descriptions, so you must not create identifiers that match those keywords. They have special meaning to
the compiler, therefore, if you use a reserved keyword in a program you will not be able to compile it. You
can review Arduino's reserved keywords on the Arduino website.

If you want to implement a variable that is visible in all functions, it must be defined outside a function. This
makes it globally visible. In the example program below, Line 1 defines a global variable "counter" of the
data type "int". This is available throughout the program and can be changed by any function. In the
example, the variable is initialized with the value 0 in the "setup" function. If you display the value of each
iteration in the serial monitor of the Arduino IDE, you can see that it always increases by 1.

If a variable is only to be visible within the function, it must be embedded in the instruction block ("{... }")
of the function.

Functions

You know that the two standard functions "setup" and "loop" must appear in an Arduino program.
Functions can also be structured differently. They can have a return value and/or a transfer parameter.

In the example below, the program stores the addition of two values in a separate function that returns the
result. This is used to avoid writing a certain sequence more than once. Function
"executeAddition" accepts two transfer parameters of the data type int, adds them together, and returns
the result of the data type int.

In line 17, the function is called with the variable "counter" and the value 2. The function implemented in
line 3 adds these two values together and returns the result, which is stored in the variable "counter".

3 Bionics4Education

If queries

When writing your own program, variables must always be checked for certain values. This is implemented
with "If queries". Such a query could check whether the value of the variable "counter" is greater than or
equal to 100 and then execute an action. In the example program below, line 18 checks the value of the
variable "counter", if it is greater than or equal to 100, everything within the statement block of the If
query is executed. In this case, the variable
"counter" is set to 0. If the condition is not fulfilled, an alternative statement block (else) is executed. In
this case, the function "calculateAddition()" is called.

Loops

A loop is used to execute an action more than once. You can use the "for loop" to define repetitions up to
a certain termination condition. In the example below, the initialization (int x = 0), the termination
condition (i <= 5) and the continuation (i++) are passed in parentheses. During the first run, the variable x
has the value 0 and the counter is increased by 1. If the end of the statement block of the loop is reached,
the continuation statement is executed and i is increased by 1. This action is repeated until x reaches the
value 6.

Comments

Comments are built into code for better readability. In C/C++ there are two ways to comment: single-line
and multi-line. Single-line comments are introduced by two slashes "//". Multi-line comments start with a
slash and a star "/*" and end with a star and slash "*/". Everything within these characters is not
executed by the program.

4 Bionics4Education

Installing Arduino IDE

To install the Arduinio IDE, you need the following:

o Computers with Internet access
o Micro-USB cable
o ESP32 microcontroller (included in the Bionics Kit)

1. Download and install the Arduino IDE from the official Arduino website (https://www.arduino.cc/
en/Main/Software). You are now able to program various microcontrollers.

To program the microcontroller used with the bionic robots (ESP32), information relevant to the board
must be added to the IDE. To program the ESP32 with the Arduino IDE, the following steps must be
performed. (For more information, go to https://github.com/espressif/arduino-esp32).

Installing Git
Git is a software program for version control of files. In this case, it will be used to get an up-to-date
version of the software for using the ESP32 with the Arduino environment.

1. Go to the Git website (https://git-scm.com/download) to download the program for your operating
system.

2. Perform the installation with the default settings. After the installation there are two new entries in
the Windows context menu (right click in Windows Explorer).The "Git GUI here" entry starts the
interface for downloading Git folders. With the entry "Git Bash here" a Git command line opens, in
which further functions, which are not necessary for our purposes, are available.

3. Start "Git Gui" and click on "Clone Existing Repository". Enter the following input mask (Note: this
is for a Windows download) and then click "Clone".
-Source Location: "https://github.com/espressif/arduino-esp32.git"
-Target Directory: "C:/Benutzer/[Dein Nutzername]/Dokumente/Arduino/hardware/espressif/
esp32"

4. After all files have been successfully downloaded, a new window appears, which can be closed.
5. In Windows Explorer, change the path of "Target Directory". Open the "tools" folder and start

"git.exe". This downloads additional software necessary for development with the ESP32. Now all
necessary preparations are finished and the Arduino IDE can be started.

Testing the Environment

For a complete function test of the ESP32, load the example program onto the microcontroller.

o First, select the appropriate board. Tools -> Board: -> ESP32 Dev Module
o Then open the example program. File -> Examples -> 01.Basics -> BareMinimum
o Load the program to the microcontroller. Sketch -> Upload. If no error messages appear, the IDE

has been completely set-up.

The example program "BareMinimum", has no executable code, it is only used for testing the upload
to the microcontroller. At startup, the "setup()" function is called (line 1). This contains all
initializations for the program. Line 6 contains the function "loop()", which is called and executed
infinitely often.

5 Bionics4Education

	Blank Page
	Blank Page
	Blank Page
	Blank Page

